Shortcuts

torch.dynamic-shape

cond_branch_class_method

Note

Tags: torch.dynamic-shape, torch.cond

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import cond


class MySubModule(torch.nn.Module):
    def foo(self, x):
        return x.cos()

    def forward(self, x):
        return self.foo(x)


class CondBranchClassMethod(torch.nn.Module):
    """
    The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
      - both branches must take the same args, which must also match the branch args passed to cond.
      - both branches must return a single tensor
      - returned tensor must have the same tensor metadata, e.g. shape and dtype
      - branch function can be free function, nested function, lambda, class methods
      - branch function can not have closure variables
      - no inplace mutations on inputs or global variables


    This example demonstrates using class method in cond().

    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """

    def __init__(self):
        super().__init__()
        self.subm = MySubModule()

    def bar(self, x):
        return x.sin()

    def forward(self, x):
        return cond(x.shape[0] <= 2, self.subm.forward, self.bar, [x])

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3]"):
                true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
            getitem: "f32[3]" = conditional[0];  conditional = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[3]"):
                        cos: "f32[3]" = torch.ops.aten.cos.default(arg0_1);  arg0_1 = None
                return (cos,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[3]"):
                        sin: "f32[3]" = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                return (sin,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
Equality constraints: []

cond_branch_nested_function

Note

Tags: torch.dynamic-shape, torch.cond

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import cond


def cond_branch_nested_function(x):
    """
    The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
      - both branches must take the same args, which must also match the branch args passed to cond.
      - both branches must return a single tensor
      - returned tensor must have the same tensor metadata, e.g. shape and dtype
      - branch function can be free function, nested function, lambda, class methods
      - branch function can not have closure variables
      - no inplace mutations on inputs or global variables

    This example demonstrates using nested function in cond().

    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """

    def true_fn(x):
        def inner_true_fn(y):
            return x + y

        return inner_true_fn(x)

    def false_fn(x):
        def inner_false_fn(y):
            return x - y

        return inner_false_fn(x)

    return cond(x.shape[0] < 10, true_fn, false_fn, [x])

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3]"):
                true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
            getitem: "f32[3]" = conditional[0];  conditional = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[3]"):
                        add: "f32[3]" = torch.ops.aten.add.Tensor(arg0_1, arg0_1);  arg0_1 = None
                return (add,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[3]"):
                        sub: "f32[3]" = torch.ops.aten.sub.Tensor(arg0_1, arg0_1);  arg0_1 = None
                return (sub,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
Equality constraints: []

cond_branch_nonlocal_variables

Note

Tags: torch.dynamic-shape, torch.cond

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import cond


def cond_branch_nonlocal_variables(x):
    """
    The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
      - both branches must take the same args, which must also match the branch args passed to cond.
      - both branches must return a single tensor
      - returned tensor must have the same tensor metadata, e.g. shape and dtype
      - branch function can be free function, nested function, lambda, class methods
      - branch function can not have closure variables
      - no inplace mutations on inputs or global variables

    This example demonstrates how to rewrite code to avoid capturing closure variables in branch functions.

    The code below will not work because capturing closure variables is not supported.
    ```
    my_tensor_var = x + 100
    my_primitive_var = 3.14

    def true_fn(y):
        nonlocal my_tensor_var, my_primitive_var
        return y + my_tensor_var + my_primitive_var

    def false_fn(y):
        nonlocal my_tensor_var, my_primitive_var
        return y - my_tensor_var - my_primitive_var

    return cond(x.shape[0] > 5, true_fn, false_fn, [x])
    ```

    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """

    my_tensor_var = x + 100
    my_primitive_var = 3.14

    def true_fn(x, y, z):
        return x + y + z

    def false_fn(x, y, z):
        return x - y - z

    return cond(
        x.shape[0] > 5,
        true_fn,
        false_fn,
        [x, my_tensor_var, torch.tensor(my_primitive_var)],
    )

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, _lifted_tensor_constant0: "f32[]", l_x_: "f32[6]"):
                add: "f32[6]" = torch.ops.aten.add.Tensor(l_x_, 100)

                lift_fresh_copy: "f32[]" = torch.ops.aten.lift_fresh_copy.default(_lifted_tensor_constant0);  _lifted_tensor_constant0 = None

                true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [l_x_, add, lift_fresh_copy]);  true_graph_0 = false_graph_0 = l_x_ = add = lift_fresh_copy = None
            getitem: "f32[6]" = conditional[0];  conditional = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[6]", arg1_1: "f32[6]", arg2_1: "f32[]"):
                        add: "f32[6]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                add_1: "f32[6]" = torch.ops.aten.add.Tensor(add, arg2_1);  add = arg2_1 = None
                return (add_1,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[6]", arg1_1: "f32[6]", arg2_1: "f32[]"):
                        sub: "f32[6]" = torch.ops.aten.sub.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                sub_1: "f32[6]" = torch.ops.aten.sub.Tensor(sub, arg2_1);  sub = arg2_1 = None
                return (sub_1,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.CONSTANT_TENSOR: 4>, arg=TensorArgument(name='_lifted_tensor_constant0'), target='_lifted_tensor_constant0'), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
Equality constraints: []

cond_operands

Note

Tags: torch.dynamic-shape, torch.cond

Support Level: SUPPORTED

Original source code:

import torch

from torch.export import Dim
from functorch.experimental.control_flow import cond

x = torch.randn(3, 2)
y = torch.ones(2)
dim0_x = Dim("dim0_x")

def cond_operands(x, y):
    """
    The operands passed to cond() must be:
      - a list of tensors
      - match arguments of `true_fn` and `false_fn`

    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """

    def true_fn(x, y):
        return x + y

    def false_fn(x, y):
        return x - y

    return cond(x.shape[0] > 2, true_fn, false_fn, [x, y])

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[s0, 2]", l_y_: "f32[2]"):
                sym_size_int: "Sym(s0)" = torch.ops.aten.sym_size.int(l_x_, 0)
            gt: "Sym(s0 > 2)" = sym_size_int > 2;  sym_size_int = None
            true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [l_x_, l_y_]);  gt = true_graph_0 = false_graph_0 = l_x_ = l_y_ = None
            getitem: "f32[s0, 2]" = conditional[0];  conditional = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[s0, 2]", arg1_1: "f32[2]"):
                        add: "f32[s0, 2]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                return (add,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[s0, 2]", arg1_1: "f32[2]"):
                        sub: "f32[s0, 2]" = torch.ops.aten.sub.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                return (sub,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_y_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {s0: ValueRanges(lower=2, upper=oo, is_bool=False)}
Equality constraints: []

cond_predicate

Note

Tags: torch.dynamic-shape, torch.cond

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import cond


def cond_predicate(x):
    """
    The conditional statement (aka predicate) passed to cond() must be one of the following:
      - torch.Tensor with a single element
      - boolean expression

    NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
    """

    pred = x.dim() > 2 and x.shape[2] > 10

    return cond(pred, lambda x: x.cos(), lambda y: y.sin(), [x])

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[6, 4, 3]"):
                true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
            getitem: "f32[6, 4, 3]" = conditional[0];  conditional = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[6, 4, 3]"):
                        cos: "f32[6, 4, 3]" = torch.ops.aten.cos.default(arg0_1);  arg0_1 = None
                return (cos,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[6, 4, 3]"):
                        sin: "f32[6, 4, 3]" = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                return (sin,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
Equality constraints: []

dynamic_shape_constructor

Note

Tags: torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

import torch



def dynamic_shape_constructor(x):
    """
    Tensor constructors should be captured with dynamic shape inputs rather
    than being baked in with static shape.
    """
    return torch.ones(x.shape[0] * 2)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, arg0: "f32[3, 2]"):
                ones: "f32[6]" = torch.ops.aten.ones.default([6], device = device(type='cpu'), pin_memory = False)
            return (ones,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg0'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='ones'), target=None)])
Range constraints: {}
Equality constraints: []

dynamic_shape_if_guard

Note

Tags: torch.dynamic-shape, python.control-flow

Support Level: SUPPORTED

Original source code:

import torch



class DynamicShapeIfGuard(torch.nn.Module):
    """
    `if` statement with backed dynamic shape predicate will be specialized into
    one particular branch and generate a guard. However, export will fail if the
    the dimension is marked as dynamic shape from higher level API.
    """

    def forward(self, x):
        if x.shape[0] == 3:
            return x.cos()

        return x.sin()

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, 2, 2]"):
                cos: "f32[3, 2, 2]" = torch.ops.aten.cos.default(l_x_);  l_x_ = None
            return (cos,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='cos'), target=None)])
Range constraints: {}
Equality constraints: []

dynamic_shape_map

Note

Tags: torch.dynamic-shape, torch.map

Support Level: SUPPORTED

Original source code:

import torch

from functorch.experimental.control_flow import map


def dynamic_shape_map(xs, y):
    """
    functorch map() maps a function over the first tensor dimension.
    """

    def body(x, y):
        return x + y

    return map(body, xs, y)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_xs_: "f32[3, 2]", l_y_: "f32[2]"):
                body_graph_0 = self.body_graph_0
            map_impl = torch.ops.higher_order.map_impl(body_graph_0, 1, l_xs_, l_y_);  body_graph_0 = l_xs_ = l_y_ = None
            getitem: "f32[3, 2]" = map_impl[0];  map_impl = None
            return (getitem,)

        class <lambda>(torch.nn.Module):
            def forward(self, arg0_1: "f32[2]", arg1_1: "f32[2]"):
                        add: "f32[2]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                return [add]

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_xs_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_y_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
Range constraints: {}
Equality constraints: []

dynamic_shape_round

Note

Tags: python.builtin, torch.dynamic-shape

Support Level: NOT_SUPPORTED_YET

Original source code:

import torch

from torch.export import Dim

x = torch.ones(3, 2)
dim0_x = Dim("dim0_x")

def dynamic_shape_round(x):
    """
    Calling round on dynamic shapes is not supported.
    """
    return x[: round(x.shape[0] / 2)]

Result:

Unsupported: Calling round() on symbolic value is not supported. You can use floor() to implement this functionality

dynamic_shape_slicing

Note

Tags: torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

import torch



def dynamic_shape_slicing(x):
    """
    Slices with dynamic shape arguments should be captured into the graph
    rather than being baked in.
    """
    return x[: x.shape[0] - 2, x.shape[1] - 1 :: 2]

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, 2]"):
                slice_1: "f32[1, 2]" = torch.ops.aten.slice.Tensor(l_x_, 0, 0, 1);  l_x_ = None
            slice_2: "f32[1, 1]" = torch.ops.aten.slice.Tensor(slice_1, 1, 1, 9223372036854775807, 2);  slice_1 = None
            return (slice_2,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='slice_2'), target=None)])
Range constraints: {}
Equality constraints: []

dynamic_shape_view

Note

Tags: torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

import torch



def dynamic_shape_view(x):
    """
    Dynamic shapes should be propagated to view arguments instead of being
    baked into the exported graph.
    """
    new_x_shape = x.size()[:-1] + (2, 5)
    x = x.view(*new_x_shape)
    return x.permute(0, 2, 1)

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[10, 10]"):
                view: "f32[10, 2, 5]" = torch.ops.aten.view.default(l_x_, [10, 2, 5]);  l_x_ = None

                permute: "f32[10, 5, 2]" = torch.ops.aten.permute.default(view, [0, 2, 1]);  view = None
            return (permute,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='permute'), target=None)])
Range constraints: {}
Equality constraints: []

list_contains

Note

Tags: torch.dynamic-shape, python.data-structure, python.assert

Support Level: SUPPORTED

Original source code:

import torch



def list_contains(x):
    """
    List containment relation can be checked on a dynamic shape or constants.
    """
    assert x.size(-1) in [6, 2]
    assert x.size(0) not in [4, 5, 6]
    assert "monkey" not in ["cow", "pig"]
    return x + x

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, 2]"):
                add: "f32[3, 2]" = torch.ops.aten.add.Tensor(l_x_, l_x_);  l_x_ = None
            return (add,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {}
Equality constraints: []

scalar_output

Note

Tags: torch.dynamic-shape

Support Level: SUPPORTED

Original source code:

import torch

from torch.export import Dim

x = torch.ones(3, 2)
dim1_x = Dim("dim1_x")

def scalar_output(x):
    """
    Returning scalar values from the graph is supported, in addition to Tensor
    outputs. Symbolic shapes are captured and rank is specialized.
    """
    return x.shape[1] + 1

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, s0]"):
            # No stacktrace found for following nodes
            sym_size_int: "Sym(s0)" = torch.ops.aten.sym_size.int(l_x_, 1);  l_x_ = None
            add: "Sym(s0 + 1)" = sym_size_int + 1;  sym_size_int = None
            return (add,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=SymIntArgument(name='add'), target=None)])
Range constraints: {s0: ValueRanges(lower=2, upper=oo, is_bool=False)}
Equality constraints: []

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources