Shortcuts

python.data-structure

dictionary

Note

Tags: python.data-structure

Support Level: SUPPORTED

Original source code:

import torch



def dictionary(x, y):
    """
    Dictionary structures are inlined and flattened along tracing.
    """
    elements = {}
    elements["x2"] = x * x
    y = y * elements["x2"]
    return {"y": y}

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, 2]", l_y_: "i64[]"):
                mul: "f32[3, 2]" = torch.ops.aten.mul.Tensor(l_x_, l_x_);  l_x_ = None

                mul_1: "f32[3, 2]" = torch.ops.aten.mul.Tensor(l_y_, mul);  l_y_ = mul = None
            return (mul_1,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_y_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='mul_1'), target=None)])
Range constraints: {}
Equality constraints: []

fn_with_kwargs

Note

Tags: python.data-structure

Support Level: SUPPORTED

Original source code:

import torch



    ),
    tags={"python.data-structure"},
    support_level=SupportLevel.SUPPORTED,
)
def fn_with_kwargs(pos0, tuple0, *myargs, mykw0, **mykwargs):
    """
    Keyword arguments are not supported at the moment.
    """
    out = pos0
    for arg in tuple0:
        out = out * arg
    for arg in myargs:
        out = out * arg
    out = out * mykw0
    out = out * mykwargs["input0"] * mykwargs["input1"]
    return out

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, out: "f32[4]", arg: "f32[4]", arg_1: "f32[4]", arg_2: "f32[4]", arg_3: "f32[4]", l_mykw0_: "f32[4]", l_mykwargs_input0_: "f32[4]", l_mykwargs_input1_: "f32[4]"):
                mul: "f32[4]" = torch.ops.aten.mul.Tensor(out, arg);  out = arg = None
            mul_1: "f32[4]" = torch.ops.aten.mul.Tensor(mul, arg_1);  mul = arg_1 = None

                mul_2: "f32[4]" = torch.ops.aten.mul.Tensor(mul_1, arg_2);  mul_1 = arg_2 = None
            mul_3: "f32[4]" = torch.ops.aten.mul.Tensor(mul_2, arg_3);  mul_2 = arg_3 = None

                mul_4: "f32[4]" = torch.ops.aten.mul.Tensor(mul_3, l_mykw0_);  mul_3 = l_mykw0_ = None

                mul_5: "f32[4]" = torch.ops.aten.mul.Tensor(mul_4, l_mykwargs_input0_);  mul_4 = l_mykwargs_input0_ = None
            mul_6: "f32[4]" = torch.ops.aten.mul.Tensor(mul_5, l_mykwargs_input1_);  mul_5 = l_mykwargs_input1_ = None
            return (mul_6,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='out'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg_1'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg_2'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg_3'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_mykw0_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_mykwargs_input0_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_mykwargs_input1_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='mul_6'), target=None)])
Range constraints: {}
Equality constraints: []

list_contains

Note

Tags: torch.dynamic-shape, python.data-structure, python.assert

Support Level: SUPPORTED

Original source code:

import torch



def list_contains(x):
    """
    List containment relation can be checked on a dynamic shape or constants.
    """
    assert x.size(-1) in [6, 2]
    assert x.size(0) not in [4, 5, 6]
    assert "monkey" not in ["cow", "pig"]
    return x + x

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, l_x_: "f32[3, 2]"):
                add: "f32[3, 2]" = torch.ops.aten.add.Tensor(l_x_, l_x_);  l_x_ = None
            return (add,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {}
Equality constraints: []

list_unpack

Note

Tags: python.data-structure, python.control-flow

Support Level: SUPPORTED

Original source code:

from typing import List

import torch



def list_unpack(args: List[torch.Tensor]):
    """
    Lists are treated as static construct, therefore unpacking should be
    erased after tracing.
    """
    x, *y = args
    return x + y[0]

Result:

ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, x: "f32[3, 2]", l_args_1_: "i64[]", arg2: "i64[]"):
                add: "f32[3, 2]" = torch.ops.aten.add.Tensor(x, l_args_1_);  x = l_args_1_ = None
            return (add,)

Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_args_1_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='arg2'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add'), target=None)])
Range constraints: {}
Equality constraints: []

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources