torch.cholesky_inverse¶
- torch.cholesky_inverse(input, upper=False, *, out=None) Tensor ¶
Computes the inverse of a symmetric positive-definite matrix using its Cholesky factor : returns matrix
inv
. The inverse is computed using LAPACK routinesdpotri
andspotri
(and the corresponding MAGMA routines).If
upper
isFalse
, is lower triangular such that the returned tensor isIf
upper
isTrue
or not provided, is upper triangular such that the returned tensor isSupports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if is a batch of matrices then the output has the same batch dimensions.
- Parameters:
- Keyword Arguments:
out (Tensor, optional) – the output tensor for inv
Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite >>> u = torch.linalg.cholesky(a) >>> a tensor([[ 0.9935, -0.6353, 1.5806], [ -0.6353, 0.8769, -1.7183], [ 1.5806, -1.7183, 10.6618]]) >>> torch.cholesky_inverse(u) tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> a.inverse() tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> a = torch.randn(3, 2, 2) # Example for batched input >>> a = a @ a.mT + 1e-03 # make symmetric positive-definite >>> l = torch.linalg.cholesky(a) >>> z = l @ l.mT >>> torch.dist(z, a) tensor(3.5894e-07)