Shortcuts

torch.cholesky_inverse

torch.cholesky_inverse(input, upper=False, *, out=None) Tensor

Computes the inverse of a symmetric positive-definite matrix AA using its Cholesky factor uu: returns matrix inv. The inverse is computed using LAPACK routines dpotri and spotri (and the corresponding MAGMA routines).

If upper is False, uu is lower triangular such that the returned tensor is

inv=(uuT)1inv = (uu^{{T}})^{{-1}}

If upper is True or not provided, uu is upper triangular such that the returned tensor is

inv=(uTu)1inv = (u^T u)^{{-1}}

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if AA is a batch of matrices then the output has the same batch dimensions.

Parameters:
  • input (Tensor) – the input tensor AA of size (,n,n)(*, n, n), consisting of symmetric positive-definite matrices where * is zero or more batch dimensions.

  • upper (bool, optional) – flag that indicates whether to return a upper or lower triangular matrix. Default: False

Keyword Arguments:

out (Tensor, optional) – the output tensor for inv

Example:

>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite
>>> u = torch.linalg.cholesky(a)
>>> a
tensor([[  0.9935,  -0.6353,   1.5806],
        [ -0.6353,   0.8769,  -1.7183],
        [  1.5806,  -1.7183,  10.6618]])
>>> torch.cholesky_inverse(u)
tensor([[ 1.9314,  1.2251, -0.0889],
        [ 1.2251,  2.4439,  0.2122],
        [-0.0889,  0.2122,  0.1412]])
>>> a.inverse()
tensor([[ 1.9314,  1.2251, -0.0889],
        [ 1.2251,  2.4439,  0.2122],
        [-0.0889,  0.2122,  0.1412]])
>>> a = torch.randn(3, 2, 2) # Example for batched input
>>> a = a @ a.mT + 1e-03 # make symmetric positive-definite
>>> l = torch.linalg.cholesky(a)
>>> z = l @ l.mT
>>> torch.dist(z, a)
tensor(3.5894e-07)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources