torch.cholesky¶
- torch.cholesky(input, upper=False, *, out=None) Tensor ¶
Computes the Cholesky decomposition of a symmetric positive-definite matrix or for batches of symmetric positive-definite matrices.
If
upper
isTrue
, the returned matrixU
is upper-triangular, and the decomposition has the form:If
upper
isFalse
, the returned matrixL
is lower-triangular, and the decomposition has the form:If
upper
isTrue
, and is a batch of symmetric positive-definite matrices, then the returned tensor will be composed of upper-triangular Cholesky factors of each of the individual matrices. Similarly, whenupper
isFalse
, the returned tensor will be composed of lower-triangular Cholesky factors of each of the individual matrices.Warning
torch.cholesky()
is deprecated in favor oftorch.linalg.cholesky()
and will be removed in a future PyTorch release.L = torch.cholesky(A)
should be replaced withL = torch.linalg.cholesky(A)
U = torch.cholesky(A, upper=True)
should be replaced withU = torch.linalg.cholesky(A).mH
This transform will produce equivalent results for all valid (symmetric positive definite) inputs.
- Parameters:
- Keyword Arguments:
out (Tensor, optional) – the output matrix
Example:
>>> a = torch.randn(3, 3) >>> a = a @ a.mT + 1e-3 # make symmetric positive-definite >>> l = torch.cholesky(a) >>> a tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> l tensor([[ 1.5528, 0.0000, 0.0000], [-0.4821, 1.0592, 0.0000], [ 0.9371, 0.5487, 0.7023]]) >>> l @ l.mT tensor([[ 2.4112, -0.7486, 1.4551], [-0.7486, 1.3544, 0.1294], [ 1.4551, 0.1294, 1.6724]]) >>> a = torch.randn(3, 2, 2) # Example for batched input >>> a = a @ a.mT + 1e-03 # make symmetric positive-definite >>> l = torch.cholesky(a) >>> z = l @ l.mT >>> torch.dist(z, a) tensor(2.3842e-07)