torch.signal.windows.cosine¶
- torch.signal.windows.cosine(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source]¶
Computes a window with a simple cosine waveform, following the same implementation as SciPy. This window is also known as the sine window.
The cosine window is defined as follows:
This formula differs from the typical cosine window formula by incorporating a 0.5 term in the numerator, which shifts the sample positions. This adjustment results in a window that starts and ends with non-zero values.
The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if
M
is even andsym
is True.- Parameters
M (int) – the length of the window. In other words, the number of points of the returned window.
- Keyword Arguments
sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True.
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: ifNone
, uses a global default (seetorch.set_default_dtype()
).layout (
torch.layout
, optional) – the desired layout of returned Tensor. Default:torch.strided
.device (
torch.device
, optional) – the desired device of returned tensor. Default: ifNone
, uses the current device for the default tensor type (seetorch.set_default_device()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Return type
Examples:
>>> # Generates a symmetric cosine window. >>> torch.signal.windows.cosine(10) tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564]) >>> # Generates a periodic cosine window. >>> torch.signal.windows.cosine(10, sym=False) tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])