ConvTranspose1d¶
- class torch.ao.nn.quantized.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)[source]¶
Applies a 1D transposed convolution operator over an input image composed of several input planes. For details on input arguments, parameters, and implementation see
ConvTranspose1d
.Note
Currently only the QNNPACK engine is implemented. Please, set the torch.backends.quantized.engine = ‘qnnpack’
For special notes, please, see
Conv1d
- Variables
See
ConvTranspose2d
for other attributes.Examples:
>>> torch.backends.quantized.engine = 'qnnpack' >>> from torch.ao.nn import quantized as nnq >>> # With square kernels and equal stride >>> m = nnq.ConvTranspose1d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nnq.ConvTranspose1d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = torch.randn(20, 16, 50) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> output = m(q_input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12) >>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8) >>> downsample = nnq.Conv1d(16, 16, 3, stride=2, padding=1) >>> upsample = nnq.ConvTranspose1d(16, 16, 3, stride=2, padding=1) >>> h = downsample(q_input) >>> h.size() torch.Size([1, 16, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12])