Automatic Mixed Precision package - torch.amp¶
torch.amp
provides convenience methods for mixed precision,
where some operations use the torch.float32
(float
) datatype and other operations
use lower precision floating point datatype (lower_precision_fp
): torch.float16
(half
) or torch.bfloat16
. Some ops, like linear layers and convolutions,
are much faster in lower_precision_fp
. Other ops, like reductions, often require the dynamic
range of float32
. Mixed precision tries to match each op to its appropriate datatype.
Ordinarily, “automatic mixed precision training” with datatype of torch.float16
uses torch.autocast
and
torch.cpu.amp.GradScaler
or torch.cuda.amp.GradScaler
together, as shown in the CUDA Automatic Mixed Precision examples
and CUDA Automatic Mixed Precision recipe.
However, torch.autocast
and torch.GradScaler
are modular, and may be used separately if desired.
As shown in the CPU example section of torch.autocast
, “automatic mixed precision training/inference” on CPU with
datatype of torch.bfloat16
only uses torch.autocast
.
For CUDA and CPU, APIs are also provided separately:
torch.autocast("cuda", args...)
is equivalent totorch.cuda.amp.autocast(args...)
.torch.autocast("cpu", args...)
is equivalent totorch.cpu.amp.autocast(args...)
. For CPU, only lower precision floating point datatype oftorch.bfloat16
is supported for now.torch.GradScaler("cuda", args...)
is equivalent totorch.cuda.amp.GradScaler(args...)
.torch.GradScaler("cpu", args...)
is equivalent totorch.cpu.amp.GradScaler(args...)
.
torch.autocast
and torch.cpu.amp.autocast
are new in version 1.10.
Autocasting¶
- class torch.autocast(device_type, dtype=None, enabled=True, cache_enabled=None)[source]¶
Instances of
autocast
serve as context managers or decorators that allow regions of your script to run in mixed precision.In these regions, ops run in an op-specific dtype chosen by autocast to improve performance while maintaining accuracy. See the Autocast Op Reference for details.
When entering an autocast-enabled region, Tensors may be any type. You should not call
half()
orbfloat16()
on your model(s) or inputs when using autocasting.autocast
should wrap only the forward pass(es) of your network, including the loss computation(s). Backward passes under autocast are not recommended. Backward ops run in the same type that autocast used for corresponding forward ops.Example for CUDA Devices:
# Creates model and optimizer in default precision model = Net().cuda() optimizer = optim.SGD(model.parameters(), ...) for input, target in data: optimizer.zero_grad() # Enables autocasting for the forward pass (model + loss) with torch.autocast(device_type="cuda"): output = model(input) loss = loss_fn(output, target) # Exits the context manager before backward() loss.backward() optimizer.step()
See the CUDA Automatic Mixed Precision examples for usage (along with gradient scaling) in more complex scenarios (e.g., gradient penalty, multiple models/losses, custom autograd functions).
autocast
can also be used as a decorator, e.g., on theforward
method of your model:class AutocastModel(nn.Module): ... @torch.autocast(device_type="cuda") def forward(self, input): ...
Floating-point Tensors produced in an autocast-enabled region may be
float16
. After returning to an autocast-disabled region, using them with floating-point Tensors of different dtypes may cause type mismatch errors. If so, cast the Tensor(s) produced in the autocast region back tofloat32
(or other dtype if desired). If a Tensor from the autocast region is alreadyfloat32
, the cast is a no-op, and incurs no additional overhead. CUDA Example:# Creates some tensors in default dtype (here assumed to be float32) a_float32 = torch.rand((8, 8), device="cuda") b_float32 = torch.rand((8, 8), device="cuda") c_float32 = torch.rand((8, 8), device="cuda") d_float32 = torch.rand((8, 8), device="cuda") with torch.autocast(device_type="cuda"): # torch.mm is on autocast's list of ops that should run in float16. # Inputs are float32, but the op runs in float16 and produces float16 output. # No manual casts are required. e_float16 = torch.mm(a_float32, b_float32) # Also handles mixed input types f_float16 = torch.mm(d_float32, e_float16) # After exiting autocast, calls f_float16.float() to use with d_float32 g_float32 = torch.mm(d_float32, f_float16.float())
CPU Training Example:
# Creates model and optimizer in default precision model = Net() optimizer = optim.SGD(model.parameters(), ...) for epoch in epochs: for input, target in data: optimizer.zero_grad() # Runs the forward pass with autocasting. with torch.autocast(device_type="cpu", dtype=torch.bfloat16): output = model(input) loss = loss_fn(output, target) loss.backward() optimizer.step()
CPU Inference Example:
# Creates model in default precision model = Net().eval() with torch.autocast(device_type="cpu", dtype=torch.bfloat16): for input in data: # Runs the forward pass with autocasting. output = model(input)
CPU Inference Example with Jit Trace:
class TestModel(nn.Module): def __init__(self, input_size, num_classes): super().__init__() self.fc1 = nn.Linear(input_size, num_classes) def forward(self, x): return self.fc1(x) input_size = 2 num_classes = 2 model = TestModel(input_size, num_classes).eval() # For now, we suggest to disable the Jit Autocast Pass, # As the issue: https://github.com/pytorch/pytorch/issues/75956 torch._C._jit_set_autocast_mode(False) with torch.cpu.amp.autocast(cache_enabled=False): model = torch.jit.trace(model, torch.randn(1, input_size)) model = torch.jit.freeze(model) # Models Run for _ in range(3): model(torch.randn(1, input_size))
Type mismatch errors in an autocast-enabled region are a bug; if this is what you observe, please file an issue.
autocast(enabled=False)
subregions can be nested in autocast-enabled regions. Locally disabling autocast can be useful, for example, if you want to force a subregion to run in a particulardtype
. Disabling autocast gives you explicit control over the execution type. In the subregion, inputs from the surrounding region should be cast todtype
before use:# Creates some tensors in default dtype (here assumed to be float32) a_float32 = torch.rand((8, 8), device="cuda") b_float32 = torch.rand((8, 8), device="cuda") c_float32 = torch.rand((8, 8), device="cuda") d_float32 = torch.rand((8, 8), device="cuda") with torch.autocast(device_type="cuda"): e_float16 = torch.mm(a_float32, b_float32) with torch.autocast(device_type="cuda", enabled=False): # Calls e_float16.float() to ensure float32 execution # (necessary because e_float16 was created in an autocasted region) f_float32 = torch.mm(c_float32, e_float16.float()) # No manual casts are required when re-entering the autocast-enabled region. # torch.mm again runs in float16 and produces float16 output, regardless of input types. g_float16 = torch.mm(d_float32, f_float32)
The autocast state is thread-local. If you want it enabled in a new thread, the context manager or decorator must be invoked in that thread. This affects
torch.nn.DataParallel
andtorch.nn.parallel.DistributedDataParallel
when used with more than one GPU per process (see Working with Multiple GPUs).- Parameters
device_type (str, required) – Device type to use. Possible values are: ‘cuda’, ‘cpu’, ‘xpu’ and ‘hpu’. The type is the same as the type attribute of a
torch.device
. Thus, you may obtain the device type of a tensor using Tensor.device.type.enabled (bool, optional) – Whether autocasting should be enabled in the region. Default:
True
dtype (torch_dtype, optional) – Whether to use torch.float16 or torch.bfloat16.
cache_enabled (bool, optional) – Whether the weight cache inside autocast should be enabled. Default:
True
- class torch.cuda.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=True)[source]¶
See
torch.autocast
.torch.cuda.amp.autocast(args...)
is equivalent totorch.autocast("cuda", args...)
- torch.cuda.amp.custom_fwd(fwd=None, *, cast_inputs=None)[source]¶
Create a helper decorator for
forward
methods of custom autograd functions.Autograd functions are subclasses of
torch.autograd.Function
. See the example page for more detail.- Parameters
cast_inputs (
torch.dtype
or None, optional, default=None) – If notNone
, whenforward
runs in an autocast-enabled region, casts incoming floating-point CUDA Tensors to the target dtype (non-floating-point Tensors are not affected), then executesforward
with autocast disabled. IfNone
,forward
’s internal ops execute with the current autocast state.
Note
If the decorated
forward
is called outside an autocast-enabled region,custom_fwd
is a no-op andcast_inputs
has no effect.
- torch.cuda.amp.custom_bwd(bwd)[source]¶
Create a helper decorator for backward methods of custom autograd functions.
Autograd functions are subclasses of
torch.autograd.Function
. Ensures thatbackward
executes with the same autocast state asforward
. See the example page for more detail.
- class torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=True)[source]¶
See
torch.autocast
.torch.cpu.amp.autocast(args...)
is equivalent totorch.autocast("cpu", args...)
Gradient Scaling¶
If the forward pass for a particular op has float16
inputs, the backward pass for
that op will produce float16
gradients.
Gradient values with small magnitudes may not be representable in float16
.
These values will flush to zero (“underflow”), so the update for the corresponding parameters will be lost.
To prevent underflow, “gradient scaling” multiplies the network’s loss(es) by a scale factor and invokes a backward pass on the scaled loss(es). Gradients flowing backward through the network are then scaled by the same factor. In other words, gradient values have a larger magnitude, so they don’t flush to zero.
Each parameter’s gradient (.grad
attribute) should be unscaled before the optimizer
updates the parameters, so the scale factor does not interfere with the learning rate.
Note
AMP/fp16 may not work for every model! For example, most bf16-pretrained models cannot operate in the fp16 numerical range of max 65504 and will cause gradients to overflow instead of underflow. In this case, the scale factor may decrease under 1 as an attempt to bring gradients to a number representable in the fp16 dynamic range. While one may expect the scale to always be above 1, our GradScaler does NOT make this guarantee to maintain performance. If you encounter NaNs in your loss or gradients when running with AMP/fp16, verify your model is compatible.
Autocast Op Reference¶
Op Eligibility¶
Ops that run in float64
or non-floating-point dtypes are not eligible, and will
run in these types whether or not autocast is enabled.
Only out-of-place ops and Tensor methods are eligible.
In-place variants and calls that explicitly supply an out=...
Tensor
are allowed in autocast-enabled regions, but won’t go through autocasting.
For example, in an autocast-enabled region a.addmm(b, c)
can autocast,
but a.addmm_(b, c)
and a.addmm(b, c, out=d)
cannot.
For best performance and stability, prefer out-of-place ops in autocast-enabled
regions.
Ops called with an explicit dtype=...
argument are not eligible,
and will produce output that respects the dtype
argument.
CUDA Op-Specific Behavior¶
The following lists describe the behavior of eligible ops in autocast-enabled regions.
These ops always go through autocasting whether they are invoked as part of a torch.nn.Module
,
as a function, or as a torch.Tensor
method. If functions are exposed in multiple namespaces,
they go through autocasting regardless of the namespace.
Ops not listed below do not go through autocasting. They run in the type defined by their inputs. However, autocasting may still change the type in which unlisted ops run if they’re downstream from autocasted ops.
If an op is unlisted, we assume it’s numerically stable in float16
.
If you believe an unlisted op is numerically unstable in float16
,
please file an issue.
CUDA Ops that can autocast to float16
¶
__matmul__
,
addbmm
,
addmm
,
addmv
,
addr
,
baddbmm
,
bmm
,
chain_matmul
,
multi_dot
,
conv1d
,
conv2d
,
conv3d
,
conv_transpose1d
,
conv_transpose2d
,
conv_transpose3d
,
GRUCell
,
linear
,
LSTMCell
,
matmul
,
mm
,
mv
,
prelu
,
RNNCell
CUDA Ops that can autocast to float32
¶
__pow__
,
__rdiv__
,
__rpow__
,
__rtruediv__
,
acos
,
asin
,
binary_cross_entropy_with_logits
,
cosh
,
cosine_embedding_loss
,
cdist
,
cosine_similarity
,
cross_entropy
,
cumprod
,
cumsum
,
dist
,
erfinv
,
exp
,
expm1
,
group_norm
,
hinge_embedding_loss
,
kl_div
,
l1_loss
,
layer_norm
,
log
,
log_softmax
,
log10
,
log1p
,
log2
,
margin_ranking_loss
,
mse_loss
,
multilabel_margin_loss
,
multi_margin_loss
,
nll_loss
,
norm
,
normalize
,
pdist
,
poisson_nll_loss
,
pow
,
prod
,
reciprocal
,
rsqrt
,
sinh
,
smooth_l1_loss
,
soft_margin_loss
,
softmax
,
softmin
,
softplus
,
sum
,
renorm
,
tan
,
triplet_margin_loss
CUDA Ops that promote to the widest input type¶
These ops don’t require a particular dtype for stability, but take multiple inputs
and require that the inputs’ dtypes match. If all of the inputs are
float16
, the op runs in float16
. If any of the inputs is float32
,
autocast casts all inputs to float32
and runs the op in float32
.
addcdiv
,
addcmul
,
atan2
,
bilinear
,
cross
,
dot
,
grid_sample
,
index_put
,
scatter_add
,
tensordot
Some ops not listed here (e.g., binary ops like add
) natively promote
inputs without autocasting’s intervention. If inputs are a mixture of float16
and float32
, these ops run in float32
and produce float32
output,
regardless of whether autocast is enabled.
Prefer binary_cross_entropy_with_logits
over binary_cross_entropy
¶
The backward passes of torch.nn.functional.binary_cross_entropy()
(and torch.nn.BCELoss
, which wraps it)
can produce gradients that aren’t representable in float16
. In autocast-enabled regions, the forward input
may be float16
, which means the backward gradient must be representable in float16
(autocasting float16
forward inputs to float32
doesn’t help, because that cast must be reversed in backward).
Therefore, binary_cross_entropy
and BCELoss
raise an error in autocast-enabled regions.
Many models use a sigmoid layer right before the binary cross entropy layer.
In this case, combine the two layers using torch.nn.functional.binary_cross_entropy_with_logits()
or torch.nn.BCEWithLogitsLoss
. binary_cross_entropy_with_logits
and BCEWithLogits
are safe to autocast.
CPU Op-Specific Behavior¶
The following lists describe the behavior of eligible ops in autocast-enabled regions.
These ops always go through autocasting whether they are invoked as part of a torch.nn.Module
,
as a function, or as a torch.Tensor
method. If functions are exposed in multiple namespaces,
they go through autocasting regardless of the namespace.
Ops not listed below do not go through autocasting. They run in the type defined by their inputs. However, autocasting may still change the type in which unlisted ops run if they’re downstream from autocasted ops.
If an op is unlisted, we assume it’s numerically stable in bfloat16
.
If you believe an unlisted op is numerically unstable in bfloat16
,
please file an issue.
CPU Ops that can autocast to bfloat16
¶
conv1d
,
conv2d
,
conv3d
,
bmm
,
mm
,
baddbmm
,
addmm
,
addbmm
,
linear
,
matmul
,
_convolution
CPU Ops that can autocast to float32
¶
conv_transpose1d
,
conv_transpose2d
,
conv_transpose3d
,
avg_pool3d
,
binary_cross_entropy
,
grid_sampler
,
grid_sampler_2d
,
_grid_sampler_2d_cpu_fallback
,
grid_sampler_3d
,
polar
,
prod
,
quantile
,
nanquantile
,
stft
,
cdist
,
trace
,
view_as_complex
,
cholesky
,
cholesky_inverse
,
cholesky_solve
,
inverse
,
lu_solve
,
orgqr
,
inverse
,
ormqr
,
pinverse
,
max_pool3d
,
max_unpool2d
,
max_unpool3d
,
adaptive_avg_pool3d
,
reflection_pad1d
,
reflection_pad2d
,
replication_pad1d
,
replication_pad2d
,
replication_pad3d
,
mse_loss
,
ctc_loss
,
kl_div
,
multilabel_margin_loss
,
fft_fft
,
fft_ifft
,
fft_fft2
,
fft_ifft2
,
fft_fftn
,
fft_ifftn
,
fft_rfft
,
fft_irfft
,
fft_rfft2
,
fft_irfft2
,
fft_rfftn
,
fft_irfftn
,
fft_hfft
,
fft_ihfft
,
linalg_matrix_norm
,
linalg_cond
,
linalg_matrix_rank
,
linalg_solve
,
linalg_cholesky
,
linalg_svdvals
,
linalg_eigvals
,
linalg_eigvalsh
,
linalg_inv
,
linalg_householder_product
,
linalg_tensorinv
,
linalg_tensorsolve
,
fake_quantize_per_tensor_affine
,
eig
,
geqrf
,
lstsq
,
_lu_with_info
,
qr
,
solve
,
svd
,
symeig
,
triangular_solve
,
fractional_max_pool2d
,
fractional_max_pool3d
,
adaptive_max_pool3d
,
multilabel_margin_loss_forward
,
linalg_qr
,
linalg_cholesky_ex
,
linalg_svd
,
linalg_eig
,
linalg_eigh
,
linalg_lstsq
,
linalg_inv_ex
CPU Ops that promote to the widest input type¶
These ops don’t require a particular dtype for stability, but take multiple inputs
and require that the inputs’ dtypes match. If all of the inputs are
bfloat16
, the op runs in bfloat16
. If any of the inputs is float32
,
autocast casts all inputs to float32
and runs the op in float32
.
cat
,
stack
,
index_copy
Some ops not listed here (e.g., binary ops like add
) natively promote
inputs without autocasting’s intervention. If inputs are a mixture of bfloat16
and float32
, these ops run in float32
and produce float32
output,
regardless of whether autocast is enabled.