Shortcuts

Source code for torch.distributed.device_mesh

# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import math
from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union

import torch

from torch.distributed import is_available

from ..utils._typing_utils import not_none

__all__ = ["init_device_mesh", "DeviceMesh"]


if not is_available():
    import sys

    # We need to create the stubs when distributed is not available.
    # Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```),
    # since it would try to import ``torch.distributed.device_mesh`` or
    # ``torch.distributed.init_device_mesh`` but cannot find them.

    class _DeviceMeshStub:
        pass

    def _init_device_mesh_stub():
        pass

    sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub  # type: ignore[attr-defined]
    sys.modules[
        "torch.distributed.device_mesh"
    ].init_device_mesh = _init_device_mesh_stub  # type: ignore[attr-defined]


else:
    from torch.distributed.distributed_c10d import (
        _find_pg_by_ranks_and_tag,
        _get_default_group,
        _get_group_tag,
        get_rank,
        get_world_size,
        init_process_group,
        is_initialized,
        new_group,
        ProcessGroup,
    )

    logger = logging.getLogger(__name__)

    # only import numpy typing when type checking
    if TYPE_CHECKING:
        try:
            from numpy.typing import ArrayLike
        except ImportError:
            logger.warning(
                "DeviceMesh requires numpy >= 1.21 to be installed for type checking"
            )

    class _MeshEnv:
        def __init__(self) -> None:
            self.mesh_stack: List[DeviceMesh] = []
            self.child_to_parent_mapping: Dict[DeviceMesh, DeviceMesh] = {}

        def get_current_mesh(self) -> "DeviceMesh":
            if len(self.mesh_stack) == 0:
                raise RuntimeError("No device mesh is currently active!")
            return self.mesh_stack[-1]

        def create_child_mesh(
            self, device_mesh: "DeviceMesh", mesh_dim: int, mesh_dim_name: str
        ) -> "DeviceMesh":
            # swap the current dim to the last dim then reshape to flatten out other
            # dims, so we can just extract the list of ranks which contains cur_rank.
            cur_rank = device_mesh.get_rank()
            pg_ranks_by_dim = device_mesh.mesh.swapdims(-1, mesh_dim).reshape(
                -1, device_mesh.mesh.size(mesh_dim)
            )

            for mesh_1d in pg_ranks_by_dim:
                sub_mesh = DeviceMesh(
                    device_mesh.device_type,
                    mesh_1d,
                    mesh_dim_names=(mesh_dim_name,),
                )
                if cur_rank in mesh_1d:
                    res_sub_mesh = sub_mesh

            res_sub_mesh._dim_group_infos = [device_mesh._dim_group_infos[mesh_dim]]  # type: ignore[possibly-undefined]
            # Assign the current DeviceMesh as the parent of the child DeviceMesh.
            self.child_to_parent_mapping[res_sub_mesh] = device_mesh
            return res_sub_mesh

        def get_parent_mesh(self, device_mesh: "DeviceMesh") -> Optional["DeviceMesh"]:
            return self.child_to_parent_mapping.get(device_mesh, None)

        def get_parent_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]:
            """
            Return the index of the mesh dim in the parent mesh.
            The device_mesh passed in needs to be sliced out from a parent mesh.
            """
            parent_mesh = self.get_parent_mesh(device_mesh)
            child_mesh_dim_names = device_mesh.mesh_dim_names
            if parent_mesh and child_mesh_dim_names:
                assert (
                    len(child_mesh_dim_names) == 1
                ), "The child mesh can only be a 1D mesh."
                child_mesh_dim_name = child_mesh_dim_names[0]
                return self.get_mesh_dim_by_name(parent_mesh, child_mesh_dim_name)
            return None

        @staticmethod
        def num_devices_per_host(device_type: str) -> int:
            return _get_device_handle(device_type).device_count()

        @staticmethod
        def num_hosts(device_type: str) -> int:
            # ProcessGroup can't tell us this info so we have to infer it, assume
            # homogeneous hardware for now
            return get_world_size() // _MeshEnv.num_devices_per_host(device_type)

        def get_mesh_dim_by_name(
            self, device_mesh: "DeviceMesh", mesh_dim_name: str
        ) -> int:
            if (
                device_mesh.mesh_dim_names is None
                or len(device_mesh.mesh_dim_names) == 0
            ):
                raise KeyError(
                    "No `mesh_dim_names` found.",
                )
            if mesh_dim_name not in device_mesh.mesh_dim_names:
                raise KeyError(
                    f"Mesh dimension '{mesh_dim_name}' does not exist.",
                    f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}",
                )
            return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))

    _mesh_resources: _MeshEnv = _MeshEnv()

    def _get_device_handle(device_type: str = "cuda"):
        """
        Get the module corresponding to the device_type which is cuda or cuda-like device.
        For example, when the device_type is cuda, the module `torch.cuda` is returned.
        Return None when there is no corresponding module for device_type, otherwise
        return the corresponding module.
        """
        return getattr(torch, device_type, None)

[docs] class DeviceMesh: """ DeviceMesh represents a mesh of devices, where layout of devices could be represented as a n-d dimension array, and each value of the n-d dimensional array is the global id of the default process group ranks. DeviceMesh could be used to describe the layout of devices across the cluster, and serves as a proxy for communication among the device lists within the cluster. DeviceMesh can be used as a context manager. .. note:: DeviceMesh follows SPMD programming model, which means the same PyTorch Python program is running on all processes/ranks in the cluster. Therefore, users need to make sure the `mesh` array (which describes the layout of devices) should be identical across all ranks. Inconsistent `mesh` will lead to silent hang. Args: device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout of devices, where the IDs are global IDs of the default process group. Returns: DeviceMesh: A :class:`DeviceMesh` object representing the device layout. The following program runs on each process/rank in an SPMD manner. In this example, we have 2 hosts with 4 GPUs each. A reduction over the first dimension of mesh will reduce across columns (0, 4), .. and (3, 7), a reduction over the second dimension of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7). Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) """ device_type: str mesh: torch.Tensor mesh_dim_names: Optional[Tuple[str, ...]] def __init__( self, device_type: str, mesh: Union[torch.Tensor, "ArrayLike"], *, mesh_dim_names: Optional[Tuple[str, ...]] = None, ) -> None: self.device_type = device_type if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu": raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}") self.mesh = ( mesh.detach().cpu() if isinstance(mesh, torch.Tensor) else torch.tensor(mesh, dtype=torch.int) ) self.mesh_dim_names = mesh_dim_names # private field to pre-generate DeviceMesh's hash self._flatten_mesh_list = tuple(self.mesh.flatten().tolist()) self._hash = hash((self._flatten_mesh_list, self.mesh.shape, id(self))) # Skip process group initialization if xla device. # TODO(yeounoh) implement DeviceMesh backend and register XLA backend. if device_type != "xla": # always try to create default (world) pg, even if it is not initialized # already. The world pg is used for device mesh identity (rank) on each # process (we need to know if the current global rank is in the mesh or not). self._get_or_create_default_group() self._init_process_groups() def _get_or_create_default_group(self): default_initialized = is_initialized() if not default_initialized: init_process_group() world_size = get_world_size() if self.mesh.numel() > world_size: raise RuntimeError( f"Mesh should not be bigger than default world size, but found {self.mesh.numel()} ranks!" ) device_handle = _get_device_handle(self.device_type) # TODO: if user want to pass pg_options, offer a way to do it if not default_initialized and device_handle: # automatically set the current cuda/cuda-like device base on num of gpu devices available in each host # NOTE: This device selection would only work for homogeneous hardware. num_devices_per_host = device_handle.device_count() if ( world_size > num_devices_per_host and world_size % num_devices_per_host != 0 ): raise RuntimeError( f"DeviceMesh only support homogeneous hardware, but found " f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!" ) device_handle.set_device(get_rank() % num_devices_per_host) # calculate the coordinates of the current global rank on the mesh rank_coords = (self.mesh == get_rank()).nonzero() assert rank_coords.size(0) in (0, 1) self._coordinate_on_dim: Optional[List[int]] = ( rank_coords[0].tolist() if rank_coords.size(0) > 0 else None ) return _get_default_group() def _init_process_groups(self): # tag/ranks/group_name associated with each mesh dimension, each # mesh dimension should have one sub-group per rank # # TODO(yifu): remove tag and ranks once we fully migrate to native # functional collectives. See details in: # https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208 dim_group_infos: List[Tuple[str, List[int], str]] = [] if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size(): # if the mesh is the same as world_pg, we just append the default # pg to the first dim groups, as new_group cannot have the exact # same ranks as world dim_group_infos.append( ( _get_group_tag(_get_default_group()), list(range(get_world_size())), _get_default_group().group_name, ) ) else: # create sub pgs base on the mesh argument specified for dim in range(self.mesh.ndim): # swap the current dim to the last dim # then reshape to flatten out other dims pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape( -1, self.mesh.size(dim) ) # multi-dim mesh, create subgroups by looping over the pg_ranks # for each dim and append the groups for dim_mesh in pg_ranks_by_dim: subgroup_ranks = dim_mesh.tolist() # We temporarily revert the re-use subgroup, since it breaks two internal tests. # Temporarily reverting to resolve test timeout while root-causing. # TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists. dim_group = new_group(ranks=subgroup_ranks) # only add to dim_groups if the current rank in the subgroup if self.get_rank() in subgroup_ranks: if len(dim_group_infos) > dim: raise RuntimeError( f"Each device mesh dimension should get only one process group, but got {self.get_rank} " f"in {subgroup_ranks}!" ) dim_group_infos.append( ( _get_group_tag(not_none(dim_group)), subgroup_ranks, dim_group.group_name, ) ) self._dim_group_infos = dim_group_infos def __enter__(self) -> "DeviceMesh": # set this mesh as the current mesh in mesh env _mesh_resources.mesh_stack.append(self) return self # pyre-fixme[2]: Parameter must be annotated. def __exit__(self, exc_type, exc_value, exc_traceback) -> None: # pop this mesh from mesh env _mesh_resources.mesh_stack.pop() def __repr__(self) -> str: device_mesh_repr = ( f"DeviceMesh({self.mesh.tolist()})" if not self.mesh_dim_names else f"DeviceMesh({self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})" ) return device_mesh_repr def __hash__(self): return self._hash def __eq__(self, other: object) -> bool: if not isinstance(other, DeviceMesh): return False if id(self.mesh) == id(other.mesh): return True return ( self.mesh.shape == other.mesh.shape and self._flatten_mesh_list == other._flatten_mesh_list ) def __getitem__(self, mesh_dim_name: str) -> "DeviceMesh": """ Slice the current DeviceMesh based on the mesh_dim_name given to create a child DeviceMesh. Args: mesh_dim_name (str): the name of the mesh dimension of the parent DeviceMesh to create a child DeviceMesh for. Returns: A :class:`DeviceMesh` object The following program runs on each process/rank in an SPMD manner. In this example, we have 2 hosts with 4 GPUs each. Calling mesh["tp"] on rank 0, 1, 2, 3 would return a 1D child DeviceMesh:([0, 1, 2, 3]). Calling mesh["tp"] on rank 4, 5, 6, 7 would return a 1D child DeviceMesh:([4, 5, 6, 7]). Calling mesh["dp"] on rank 0, 4 would return a 1D child DeviceMesh:([0, 4]). Calling mesh["dp"] on rank 1, 5 would return a 1D child DeviceMesh:([1, 5]). Calling mesh["dp"] on rank 2, 6 would return a 1D child DeviceMesh:([2, 6]). Calling mesh["dp"] on rank 3, 7 would return a 1D child DeviceMesh:([3, 7]). Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) """ if self.mesh.ndim == 1: if self.mesh_dim_names and mesh_dim_name == self.mesh_dim_names[0]: return self else: raise RuntimeError( f"Invalid mesh_dim_name {mesh_dim_name} specified." ) mesh_dim = _mesh_resources.get_mesh_dim_by_name(self, mesh_dim_name) submesh = _mesh_resources.create_child_mesh(self, mesh_dim, mesh_dim_name) return submesh def get_group( self, mesh_dim: Optional[Union[int, str]] = None ) -> Union[ProcessGroup, List[ProcessGroup]]: """ Returns a list of ProcessGroups corresponding to the mesh dimensions, or returns a single ProcessGroup if mesh_dim is specified or the given mesh has only one mesh dimension. Args: mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index of the mesh dimension. Default is None. Returns: A list of :class:`ProcessGroup` object when `mesh_dim` is not specified for a DeviceMesh with more than 1 dimension; otherwise, returns a single :class:`ProcessGroup` object. """ if not hasattr(self, "_dim_group_infos"): raise RuntimeError("DeviceMesh process groups not initialized!") if self.mesh.ndim == 1: return not_none( _find_pg_by_ranks_and_tag(*self._dim_group_infos[0][:2]) ) if mesh_dim is not None: if isinstance(mesh_dim, str): mesh_dim = _mesh_resources.get_mesh_dim_by_name(self, mesh_dim) return not_none( _find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2]) ) else: dim_groups = [] for ith_dim in range(self.mesh.ndim): dim_groups.append( not_none( _find_pg_by_ranks_and_tag( *self._dim_group_infos[ith_dim][:2] ) ) ) return dim_groups def size(self, mesh_dim: Optional[int] = None) -> int: return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim) @property def ndim(self) -> int: return self.mesh.ndim @property def shape(self) -> Tuple[int, ...]: return tuple(self.mesh.shape) def get_rank(self) -> int: """ Returns the current global rank. """ return get_rank() def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: """ Returns the local rank of the given mesh_dim of the DeviceMesh. Args: mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index of the mesh dimension. Default is None. Returns: An integer denotes the local rank. The following program runs on each process/rank in an SPMD manner. In this example, we have 2 hosts with 4 GPUs each. Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0. Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2. Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3. Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import DeviceMesh >>> >>> # Initialize device mesh as (2, 4) to represent the topology >>> # of cross-host(dim 0), and within-host (dim 1). >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]]) """ if self.ndim > 1 and mesh_dim is None: raise RuntimeError( f"Found the DeviceMesh have {self.mesh.ndim} dimensions", "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.", ) elif mesh_dim is None: mesh_dim = 0 mesh_dim_group = not_none(self.get_group(mesh_dim)) assert isinstance( mesh_dim_group, ProcessGroup ), "We expect ProcessGroup before calling `get_rank`!" return not_none(get_rank(mesh_dim_group)) def get_coordinate(self) -> Optional[List[int]]: """ Return the relative indices of this rank relative to all dimensions of the mesh. If this rank is not part of the mesh, return None. """ return self._coordinate_on_dim if self._coordinate_on_dim else None
[docs] def init_device_mesh( device_type: str, mesh_shape: Tuple[int, ...], *, mesh_dim_names: Optional[Tuple[str, ...]] = None, ) -> DeviceMesh: """ Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters. This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`. If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`. .. note:: `init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging. .. note:: If no process group is found, init_device_mesh will initialize distributed process group/groups required for distributed communications behind the scene. Args: device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like". mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array describing the layout of devices. mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension of the multi-dimensional array describing the layout of devices. Its length must match the length of `mesh_shape`. Each string in `mesh_dim_names` must be unique. Returns: DeviceMesh: A :class:`DeviceMesh` object representing the device layout. Example:: >>> # xdoctest: +SKIP("no rank") >>> from torch.distributed.device_mesh import init_device_mesh >>> >>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,)) >>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp")) """ if mesh_dim_names is not None: if len(set(mesh_dim_names)) != len(mesh_dim_names): raise RuntimeError( "Each mesh_dim_name must be unique.", f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}", ) if len(mesh_shape) != len(mesh_dim_names): raise RuntimeError( "mesh_shape and mesh_dim_names should have same length!", f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.", ) mesh = torch.arange(math.prod(mesh_shape)).view(mesh_shape) device_mesh = DeviceMesh( device_type=device_type, mesh=mesh, mesh_dim_names=mesh_dim_names, ) return device_mesh

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources