Softplus¶
- class torch.nn.Softplus(beta=1.0, threshold=20.0)[source]¶
Applies the Softplus function element-wise.
SoftPlus is a smooth approximation to the ReLU function and can be used to constrain the output of a machine to always be positive.
For numerical stability the implementation reverts to the linear function when .
- Parameters
- Shape:
Input: , where means any number of dimensions.
Output: , same shape as the input.
Examples:
>>> m = nn.Softplus() >>> input = torch.randn(2) >>> output = m(input)