GRUCell¶
- class torch.nn.GRUCell(input_size, hidden_size, bias=True, device=None, dtype=None)[source]¶
A gated recurrent unit (GRU) cell.
where is the sigmoid function, and is the Hadamard product.
- Parameters
- Inputs: input, hidden
input : tensor containing input features
hidden : tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.
- Outputs: h’
h’ : tensor containing the next hidden state for each element in the batch
- Shape:
input: or tensor containing input features where = input_size.
hidden: or tensor containing the initial hidden state where = hidden_size. Defaults to zero if not provided.
output: or tensor containing the next hidden state.
- Variables
weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (3*hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (3*hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape (3*hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape (3*hidden_size)
Note
All the weights and biases are initialized from where
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
Examples:
>>> rnn = nn.GRUCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)