prepare¶
- class torch.ao.quantization.prepare(model, inplace=False, allow_list=None, observer_non_leaf_module_list=None, prepare_custom_config_dict=None)[source]¶
Prepares a copy of the model for quantization calibration or quantization-aware training.
Quantization configuration should be assigned preemptively to individual submodules in .qconfig attribute.
The model will be attached with observer or fake quant modules, and qconfig will be propagated.
- Parameters
model – input model to be modified in-place
inplace – carry out model transformations in-place, the original module is mutated
allow_list – list of quantizable modules
observer_non_leaf_module_list – list of non-leaf modules we want to add observer
prepare_custom_config_dict – customization configuration dictionary for prepare function
# Example of prepare_custom_config_dict: prepare_custom_config_dict = { # user will manually define the corresponding observed # module class which has a from_float class method that converts # float custom module to observed custom module "float_to_observed_custom_module_class": { CustomModule: ObservedCustomModule } }