Source code for torch.cuda.amp.autocast_mode
import collections
import functools
import torch
try:
import numpy as np
HAS_NUMPY = True
except ModuleNotFoundError:
np = None # type: ignore[assignment]
from typing import Any
__all__ = ["autocast", "custom_fwd", "custom_bwd"]
[docs]class autocast(torch.amp.autocast_mode.autocast):
r"""See :class:`torch.autocast`.
``torch.cuda.amp.autocast(args...)`` is equivalent to ``torch.autocast("cuda", args...)``
"""
def __init__(
self,
enabled: bool = True,
dtype: torch.dtype = torch.float16,
cache_enabled: bool = True,
):
if torch._jit_internal.is_scripting():
self._enabled = enabled
self.device = "cuda"
self.fast_dtype = dtype
return
super().__init__(
"cuda", enabled=enabled, dtype=dtype, cache_enabled=cache_enabled
)
def __enter__(self):
if torch._jit_internal.is_scripting():
return self
return super().__enter__()
# TODO: discuss a unified TorchScript-friendly API for autocast
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): # type: ignore[override]
if torch._jit_internal.is_scripting():
return
return super().__exit__(exc_type, exc_val, exc_tb)
def __call__(self, func):
if torch._jit_internal.is_scripting():
return func
return super().__call__(func)
# Casts Tensors and containers of Tensors. Special-cases passthroughs for strings and np.ndarrays, which
# may be falsely detected as "Iterables."
def _cast(value, dtype):
if isinstance(value, torch.Tensor):
is_eligible = (
value.is_floating_point()
and value.is_cuda
and (value.dtype is not torch.float64)
)
return value.to(dtype) if is_eligible else value
elif isinstance(value, (str, bytes)):
return value
elif HAS_NUMPY and isinstance(value, np.ndarray):
return value
elif isinstance(value, collections.abc.Mapping):
return {_cast(k, dtype): _cast(v, dtype) for k, v in value.items()}
elif isinstance(value, collections.abc.Iterable):
iterable = (_cast(v, dtype) for v in value)
if isinstance(value, (list, tuple)):
return type(value)(iterable)
else:
return iterable
else:
return value
# custom_fwd is a decorator that may or may not be used with arguments, following
# https://github.com/dabeaz/python-cookbook/tree/master/src/9/defining_a_decorator_that_takes_an_optional_argument.
# this works:
# @custom_fwd
# def forward(...):
# this also works:
# @custom_fwd(cast_inputs=torch.float)
# def forward(...):
[docs]def custom_fwd(fwd=None, *, cast_inputs=None):
"""
Create a helper decorator for ``forward`` methods of custom autograd functions.
Autograd functions are subclasses of :class:`torch.autograd.Function`.
See the :ref:`example page<amp-custom-examples>` for more detail.
Args:
cast_inputs (:class:`torch.dtype` or None, optional, default=None): If not ``None``,
when ``forward`` runs in an autocast-enabled region, casts incoming
floating-point CUDA Tensors to the target dtype (non-floating-point Tensors are not affected),
then executes ``forward`` with autocast disabled.
If ``None``, ``forward``'s internal ops execute with the current autocast state.
.. note::
If the decorated ``forward`` is called outside an autocast-enabled region,
:func:`custom_fwd<custom_fwd>` is a no-op and ``cast_inputs`` has no effect.
"""
if fwd is None:
return functools.partial(custom_fwd, cast_inputs=cast_inputs)
@functools.wraps(fwd)
def decorate_fwd(*args, **kwargs):
args[0]._dtype = torch.get_autocast_gpu_dtype()
if cast_inputs is None:
args[0]._fwd_used_autocast = torch.is_autocast_enabled()
return fwd(*args, **kwargs)
else:
autocast_context = torch.is_autocast_enabled()
args[0]._fwd_used_autocast = False
if autocast_context:
with autocast(enabled=False):
return fwd(*_cast(args, cast_inputs), **_cast(kwargs, cast_inputs))
else:
return fwd(*args, **kwargs)
return decorate_fwd
# Autograd ensures incoming gradients are the same type as forward outputs. Allowing a separate
# cast_inputs argument on custom_bwd is unnecessary and could cause errors if it doesn't match
# cast_inputs supplied to custom_fwd.
[docs]def custom_bwd(bwd):
"""Create a helper decorator for backward methods of custom autograd functions.
Autograd functions are subclasses of :class:`torch.autograd.Function`.
Ensures that ``backward`` executes with the same autocast state as ``forward``.
See the :ref:`example page<amp-custom-examples>` for more detail.
"""
@functools.wraps(bwd)
def decorate_bwd(*args, **kwargs):
with autocast(enabled=args[0]._fwd_used_autocast, dtype=args[0]._dtype):
return bwd(*args, **kwargs)
return decorate_bwd