Source code for torch.ao.nn.quantized.dynamic.modules.linear
import torch
import torch.ao.nn.quantized as nnq
from torch.ao.nn.quantized.modules.utils import _quantize_weight
import torch.ao.nn.intrinsic as nni
__all__ = [
"Linear",
]
[docs]class Linear(nnq.Linear):
r"""
A dynamic quantized linear module with floating point tensor as inputs and outputs.
We adopt the same interface as `torch.nn.Linear`, please see
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
Similar to :class:`torch.nn.Linear`, attributes will be randomly
initialized at module creation time and will be overwritten later
Attributes:
weight (Tensor): the non-learnable quantized weights of the module which are of
shape :math:`(\text{out\_features}, \text{in\_features})`.
bias (Tensor): the non-learnable floating point bias of the module of shape
:math:`(\text{out\_features})`. If :attr:`bias` is ``True``,
the values are initialized to zero.
Examples::
>>> # xdoctest: +SKIP
>>> m = nn.quantized.dynamic.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
# version used in this class is different from the parent class nnq.Linear
_version = 4
def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8):
super().__init__(in_features, out_features, bias_, dtype=dtype)
# We don't muck around with buffers or attributes or anything here
# to keep the module simple. *everything* is simply a Python attribute.
# Serialization logic is explicitly handled in the below serialization and
# deserialization modules
self.version = 4
def forward(self, x):
# Note that we can handle self.bias == None case.
if self._packed_params.dtype == torch.qint8:
if self.version is None or self.version < 4:
Y = torch.ops.quantized.linear_dynamic(
x, self._packed_params._packed_params)
else:
Y = torch.ops.quantized.linear_dynamic(
x, self._packed_params._packed_params, reduce_range=True)
elif self._packed_params.dtype == torch.float16:
Y = torch.ops.quantized.linear_dynamic_fp16(
x, self._packed_params._packed_params)
else:
raise RuntimeError('Unsupported dtype on dynamic quantized linear!')
return Y.to(x.dtype)
def _get_name(self):
return 'DynamicQuantizedLinear'
def extra_repr(self):
extra_repr_str = 'in_features={}, out_features={}, dtype={}'.format(
self.in_features, self.out_features, self._packed_params.dtype
)
if self._packed_params.dtype == torch.qint8:
extra_repr_str += f', qscheme={self.weight().qscheme()}'
return extra_repr_str
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
version = local_metadata.get('version', None)
self.version = version
super()._load_from_state_dict(state_dict, prefix, local_metadata, False,
missing_keys, unexpected_keys, error_msgs)
[docs] @classmethod
def from_float(cls, mod):
r"""Create a dynamic quantized module from a float module or qparams_dict
Args:
mod (Module): a float module, either produced by torch.ao.quantization
utilities or provided by the user
"""
float_modules = [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear,
torch.ao.nn.intrinsic.modules.fused.LinearReLU, torch.ao.nn.qat.dynamic.Linear]
assert type(mod) in float_modules, \
'nn.quantized.dynamic.Linear.from_float only works for one of' + \
str([float_mod.__name__ for float_mod in float_modules])
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
if type(mod) == nni.LinearReLU:
mod = mod[0]
if mod.qconfig is not None and mod.qconfig.weight is not None:
weight_observer = mod.qconfig.weight()
else:
# We have the circular import issues if we import the qconfig in the beginning of this file:
# https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
# import until we need it.
from torch.ao.quantization.qconfig import default_dynamic_qconfig
weight_observer = default_dynamic_qconfig.weight()
dtype = weight_observer.dtype
assert dtype in [torch.qint8, torch.float16], "The only supported dtypes for " \
f"dynamic quantized linear are qint8 and float16 got: {dtype}"
weight_observer(mod.weight)
if dtype == torch.qint8:
qweight = _quantize_weight(mod.weight.float(), weight_observer)
elif dtype == torch.float16:
qweight = mod.weight.float()
else:
raise RuntimeError('Unsupported dtype specified for dynamic quantized Linear!')
qlinear = cls(mod.in_features, mod.out_features, dtype=dtype)
qlinear.set_weight_bias(qweight, mod.bias)
return qlinear
[docs] @classmethod
def from_reference(cls, ref_qlinear):
""" Create a (fbgemm/qnnpack) dynamic quantized module from a reference quantized
module
Args:
ref_qlinear (Module): a reference quantized module, either produced by
torch.ao.quantization functions or provided by the user
"""
qlinear = cls(ref_qlinear.in_features, ref_qlinear.out_features, dtype=ref_qlinear.weight_dtype)
qweight = ref_qlinear.get_quantized_weight()
bias = ref_qlinear.bias
qlinear.set_weight_bias(qweight, bias)
return qlinear