Source code for torch._tensor_str
import contextlib
import dataclasses
import math
import textwrap
from typing import Any, Dict, Optional
import torch
from torch import inf
@dataclasses.dataclass
class __PrinterOptions:
precision: int = 4
threshold: float = 1000
edgeitems: int = 3
linewidth: int = 80
sci_mode: Optional[bool] = None
PRINT_OPTS = __PrinterOptions()
# We could use **kwargs, but this will give better docs
[docs]def set_printoptions(
precision=None,
threshold=None,
edgeitems=None,
linewidth=None,
profile=None,
sci_mode=None,
):
r"""Set options for printing. Items shamelessly taken from NumPy
Args:
precision: Number of digits of precision for floating point output
(default = 4).
threshold: Total number of array elements which trigger summarization
rather than full `repr` (default = 1000).
edgeitems: Number of array items in summary at beginning and end of
each dimension (default = 3).
linewidth: The number of characters per line for the purpose of
inserting line breaks (default = 80). Thresholded matrices will
ignore this parameter.
profile: Sane defaults for pretty printing. Can override with any of
the above options. (any one of `default`, `short`, `full`)
sci_mode: Enable (True) or disable (False) scientific notation. If
None (default) is specified, the value is defined by
`torch._tensor_str._Formatter`. This value is automatically chosen
by the framework.
Example::
>>> # Limit the precision of elements
>>> torch.set_printoptions(precision=2)
>>> torch.tensor([1.12345])
tensor([1.12])
>>> # Limit the number of elements shown
>>> torch.set_printoptions(threshold=5)
>>> torch.arange(10)
tensor([0, 1, 2, ..., 7, 8, 9])
>>> # Restore defaults
>>> torch.set_printoptions(profile='default')
>>> torch.tensor([1.12345])
tensor([1.1235])
>>> torch.arange(10)
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
"""
if profile is not None:
if profile == "default":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
elif profile == "short":
PRINT_OPTS.precision = 2
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 2
PRINT_OPTS.linewidth = 80
elif profile == "full":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = inf
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
if precision is not None:
PRINT_OPTS.precision = precision
if threshold is not None:
PRINT_OPTS.threshold = threshold
if edgeitems is not None:
PRINT_OPTS.edgeitems = edgeitems
if linewidth is not None:
PRINT_OPTS.linewidth = linewidth
PRINT_OPTS.sci_mode = sci_mode
def get_printoptions() -> Dict[str, Any]:
r"""Gets the current options for printing, as a dictionary that
can be passed as ``**kwargs`` to set_printoptions().
"""
return dataclasses.asdict(PRINT_OPTS)
@contextlib.contextmanager
def printoptions(**kwargs):
r"""Context manager that temporarily changes the print options. Accepted
arguments are same as :func:`set_printoptions`."""
old_kwargs = get_printoptions()
set_printoptions(**kwargs)
try:
yield
finally:
set_printoptions(**old_kwargs)
def tensor_totype(t):
dtype = torch.float if t.is_mps else torch.double
return t.to(dtype=dtype)
class _Formatter:
def __init__(self, tensor):
self.floating_dtype = tensor.dtype.is_floating_point
self.int_mode = True
self.sci_mode = False
self.max_width = 1
with torch.no_grad():
tensor_view = tensor.reshape(-1)
if not self.floating_dtype:
for value in tensor_view:
value_str = f"{value}"
self.max_width = max(self.max_width, len(value_str))
else:
nonzero_finite_vals = torch.masked_select(
tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
)
if nonzero_finite_vals.numel() == 0:
# no valid number, do nothing
return
# Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs())
nonzero_finite_min = tensor_totype(nonzero_finite_abs.min())
nonzero_finite_max = tensor_totype(nonzero_finite_abs.max())
for value in nonzero_finite_vals:
if value != torch.ceil(value):
self.int_mode = False
break
if self.int_mode:
# in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
# to indicate that the tensor is of floating type. add 1 to the len to account for this.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = f"{value:.0f}"
self.max_width = max(self.max_width, len(value_str) + 1)
else:
# Check if scientific representation should be used.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
or nonzero_finite_min < 1.0e-4
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
self.max_width = max(self.max_width, len(value_str))
if PRINT_OPTS.sci_mode is not None:
self.sci_mode = PRINT_OPTS.sci_mode
def width(self):
return self.max_width
def format(self, value):
if self.floating_dtype:
if self.sci_mode:
ret = f"{{:{self.max_width}.{PRINT_OPTS.precision}e}}".format(value)
elif self.int_mode:
ret = f"{value:.0f}"
if not (math.isinf(value) or math.isnan(value)):
ret += "."
else:
ret = f"{{:.{PRINT_OPTS.precision}f}}".format(value)
else:
ret = f"{value}"
return (self.max_width - len(ret)) * " " + ret
def _scalar_str(self, formatter1, formatter2=None):
if formatter2 is not None:
real_str = _scalar_str(self.real, formatter1)
imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(self.item())
def _vector_str(self, indent, summarize, formatter1, formatter2=None):
# length includes spaces and comma between elements
element_length = formatter1.width() + 2
if formatter2 is not None:
# width for imag_formatter + an extra j for complex
element_length += formatter2.width() + 1
elements_per_line = max(
1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))
)
def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
if formatter2 is not None:
real_str = formatter1.format(val.real)
imag_str = (formatter2.format(val.imag) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(val)
if summarize and not PRINT_OPTS.edgeitems:
# Deal with edge case that negative zero is zero
data = ["..."]
elif summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
data = (
[_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()]
+ [" ..."]
+ [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()]
)
else:
data = [_val_formatter(val) for val in self.tolist()]
data_lines = [
data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line)
]
lines = [", ".join(line) for line in data_lines]
return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]"
# formatter2 is only used for printing complex tensors.
# For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
# and tensor.imag respesectively
def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
dim = self.dim()
if dim == 0:
return _scalar_str(self, formatter1, formatter2)
if dim == 1:
return _vector_str(self, indent, summarize, formatter1, formatter2)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
slices = (
[
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, PRINT_OPTS.edgeitems)
]
+ ["..."]
+ [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))
]
)
else:
slices = [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, self.size(0))
]
tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices)
return "[" + tensor_str + "]"
def _tensor_str(self, indent):
if self.numel() == 0:
return "[]"
if self.has_names():
# There are two main codepaths (possibly more) that tensor printing goes through:
# - tensor data can fit comfortably on screen
# - tensor data needs to be summarized
# Some of the codepaths don't fully support named tensors, so we send in
# an unnamed tensor to the formatting code as a workaround.
self = self.rename(None)
summarize = self.numel() > PRINT_OPTS.threshold
if self._is_zerotensor():
self = self.clone()
# handle the negative bit
if self.is_neg():
self = self.resolve_neg()
if self.dtype in [
torch.float16,
torch.bfloat16,
torch.float8_e5m2,
torch.float8_e5m2fnuz,
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
]:
self = self.float()
if self.dtype is torch.complex32:
self = self.cfloat()
if self.dtype.is_complex:
# handle the conjugate bit
self = self.resolve_conj()
real_formatter = _Formatter(
get_summarized_data(self.real) if summarize else self.real
)
imag_formatter = _Formatter(
get_summarized_data(self.imag) if summarize else self.imag
)
return _tensor_str_with_formatter(
self, indent, summarize, real_formatter, imag_formatter
)
else:
formatter = _Formatter(get_summarized_data(self) if summarize else self)
return _tensor_str_with_formatter(self, indent, summarize, formatter)
def _add_suffixes(tensor_str, suffixes, indent, force_newline):
tensor_strs = [tensor_str]
last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1
for suffix in suffixes:
suffix_len = len(suffix)
if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
tensor_strs.append(",\n" + " " * indent + suffix)
last_line_len = indent + suffix_len
force_newline = False
else:
tensor_strs.append(", " + suffix)
last_line_len += suffix_len + 2
tensor_strs.append(")")
return "".join(tensor_strs)
def get_summarized_data(self):
dim = self.dim()
if dim == 0:
return self
if dim == 1:
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
return torch.cat(
(self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :])
)
else:
return self
if not PRINT_OPTS.edgeitems:
return self.new_empty([0] * self.dim())
elif self.size(0) > 2 * PRINT_OPTS.edgeitems:
start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]
return torch.stack([get_summarized_data(x) for x in (start + end)])
else:
return torch.stack([get_summarized_data(x) for x in self])
def _str_intern(inp, *, tensor_contents=None):
if torch._C._functorch.is_functorch_wrapped_tensor(inp):
return _functorch_wrapper_str_intern(inp, tensor_contents=tensor_contents)
is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter
if inp.is_nested:
prefix = "nested_tensor("
elif is_plain_tensor:
prefix = "tensor("
else:
prefix = f"{type(inp).__name__}("
indent = len(prefix)
suffixes = []
custom_contents_provided = tensor_contents is not None
if custom_contents_provided:
tensor_str = tensor_contents
# This is used to extract the primal value and thus disable the forward AD
# within this function.
# TODO(albanD) This needs to be updated when more than one level is supported
self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
# Note [Print tensor device]:
# A general logic here is we only print device when it doesn't match
# the device specified in default tensor type.
# Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
# torch._C._get_default_device() only returns either cpu or cuda.
# In other cases, we don't have a way to set them as default yet,
# and we should always print out device for them.
if (
self.device.type != torch._C._get_default_device()
or (
self.device.type == "cuda"
and torch.cuda.current_device() != self.device.index
)
or (self.device.type == "mps")
):
suffixes.append("device='" + str(self.device) + "'")
# Tensor printing performs tensor operations like slice, indexing, etc to make it in a
# representable format. These operations on ipu/xla/lazy/mtia tensor results in compilations. Hence,
# to avoid compilations, copying the tensor to cpu before printing.
if self.device.type in ["xla", "lazy", "ipu", "mtia"]:
self = self.to("cpu")
# TODO: add an API to map real -> complex dtypes
_default_complex_dtype = (
torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
)
has_default_dtype = self.dtype in (
torch.get_default_dtype(),
_default_complex_dtype,
torch.int64,
torch.bool,
)
if self.is_sparse:
suffixes.append("size=" + str(tuple(self.shape)))
from torch._subclasses.fake_tensor import FakeTensor
is_meta = self.is_meta or isinstance(self, FakeTensor)
if not is_meta:
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
indices_prefix = "indices=tensor("
indices = self._indices().detach()
if is_meta:
indices_str = "..."
else:
indices_str = _tensor_str(indices, indent + len(indices_prefix))
if indices.numel() == 0 or is_meta:
indices_str += ", size=" + str(tuple(indices.shape))
values_prefix = "values=tensor("
values = self._values().detach()
if is_meta:
values_str = "..."
else:
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0 or is_meta:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
indices_prefix
+ indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
from torch._subclasses.fake_tensor import FakeTensor
suffixes.append("size=" + str(tuple(self.shape)))
is_meta = self.is_meta or isinstance(self, FakeTensor)
if not is_meta:
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
compressed_indices_method, plain_indices_method = {
torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
}[self.layout]
if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
cdimname, pdimname = "row", "column"
else:
cdimname, pdimname = "column", "row"
compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor("
compressed_indices = compressed_indices_method(self).detach()
if is_meta:
compressed_indices_str = "..."
else:
compressed_indices_str = _tensor_str(
compressed_indices, indent + len(compressed_indices_prefix)
)
if compressed_indices.numel() == 0 or is_meta:
compressed_indices_str += ", size=" + str(
tuple(compressed_indices.shape)
)
plain_indices_prefix = f"{pdimname[:3]}_indices=tensor("
plain_indices = plain_indices_method(self).detach()
if is_meta:
plain_indices_str = "..."
else:
plain_indices_str = _tensor_str(
plain_indices, indent + len(plain_indices_prefix)
)
if plain_indices.numel() == 0 or is_meta:
plain_indices_str += ", size=" + str(tuple(plain_indices.shape))
values_prefix = "values=tensor("
values = self.values().detach()
if is_meta:
values_str = "..."
else:
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0 or is_meta:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
compressed_indices_prefix
+ compressed_indices_str
+ "),\n"
+ " " * indent
+ plain_indices_prefix
+ plain_indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.is_quantized:
suffixes.append("size=" + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
suffixes.append("quantization_scheme=" + str(self.qscheme()))
if (
self.qscheme() == torch.per_tensor_affine
or self.qscheme() == torch.per_tensor_symmetric
):
suffixes.append("scale=" + str(self.q_scale()))
suffixes.append("zero_point=" + str(self.q_zero_point()))
elif (
self.qscheme() == torch.per_channel_affine
or self.qscheme() == torch.per_channel_symmetric
or self.qscheme() == torch.per_channel_affine_float_qparams
):
suffixes.append("scale=" + str(self.q_per_channel_scales()))
suffixes.append("zero_point=" + str(self.q_per_channel_zero_points()))
suffixes.append("axis=" + str(self.q_per_channel_axis()))
if not custom_contents_provided:
tensor_str = _tensor_str(self.dequantize(), indent)
elif self.is_nested:
if not custom_contents_provided:
def indented_str(s, indent):
return "\n".join(f" {line}" for line in s.split("\n"))
strs = ",\n".join(
indented_str(str(t), indent + 1)
for t in torch.ops.aten.unbind.int(self, 0)
)
tensor_str = f"[\n{strs}\n]"
elif torch._is_functional_tensor(self):
prefix = "_to_functional_tensor("
tensor_str = repr(torch._from_functional_tensor(self))
else:
# Circular import problem, so we import it here
from torch._subclasses.fake_tensor import FakeTensor
if self.is_meta or isinstance(self, FakeTensor):
suffixes.append("size=" + str(tuple(self.shape)))
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
# TODO: This implies that ellipses is valid syntax for allocating
# a meta tensor or FakeTensor, which it could be, but it isn't right now
if not custom_contents_provided:
tensor_str = "..."
else:
if self.numel() == 0 and not self.is_sparse:
# Explicitly print the shape if it is not (0,), to match NumPy behavior
if self.dim() != 1:
suffixes.append("size=" + str(tuple(self.shape)))
# In an empty tensor, there are no elements to infer if the dtype
# should be int64, so it must be shown explicitly.
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
tensor_str = "[]"
else:
if not PRINT_OPTS.edgeitems:
suffixes.append("size=" + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
if self.layout != torch.strided:
tensor_str = _tensor_str(self.to_dense(), indent)
else:
tensor_str = _tensor_str(self, indent)
if self.layout != torch.strided:
suffixes.append("layout=" + str(self.layout))
# Use inp here to get the original grad_fn and not the one generated by the forward grad
# unpacking.
grad_fn_name = None
try:
grad_fn = inp.grad_fn
except RuntimeError:
# Accessing the grad_fn calls rebasing logic which would cause an error
# if that tensor is a view created in no-grad mode modified in-place in
# no-grad mode. See: https://github.com/pytorch/pytorch/issues/99968
grad_fn_name = "Invalid"
if grad_fn_name is None and grad_fn is not None: # type: ignore[possibly-undefined]
grad_fn_name = type(grad_fn).__name__
if grad_fn_name == "CppFunction":
grad_fn_name = grad_fn.name().rsplit("::", 1)[-1]
if grad_fn_name is not None:
suffixes.append(f"grad_fn=<{grad_fn_name}>")
elif inp.requires_grad:
suffixes.append("requires_grad=True")
if self.has_names():
suffixes.append(f"names={self.names}")
if tangent is not None:
suffixes.append(f"tangent={tangent}")
string_repr = _add_suffixes(
prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse # type: ignore[possibly-undefined]
)
# Check if this instance is flagged as a parameter and change the repr accordingly.
# Unfortunately, this function has to be aware of this detail.
# NB: This is currently skipped for plain tensor parameters to maintain BC. In the future,
# this should be done for those as well to produce a valid repr.
if isinstance(self, torch.nn.Parameter) and not is_plain_tensor:
string_repr = f"Parameter({string_repr})"
return string_repr
def _functorch_wrapper_str_intern(tensor, *, tensor_contents=None):
level = torch._C._functorch.maybe_get_level(tensor)
assert level != -1
if torch._C._functorch.is_functionaltensor(tensor):
# Since we're unwrapping the FunctionalTensorWrapper, we need to make sure
# that it's up to date first
torch._sync(tensor)
value = torch._C._functorch.get_unwrapped(tensor)
value_repr = repr(value)
indented_value_repr = textwrap.indent(value_repr, " " * 4)
if torch._C._functorch.is_batchedtensor(tensor):
bdim = torch._C._functorch.maybe_get_bdim(tensor)
assert bdim != -1
return (
f"BatchedTensor(lvl={level}, bdim={bdim}, value=\n"
f"{indented_value_repr}\n"
f")"
)
if torch._C._functorch.is_gradtrackingtensor(tensor):
return (
f"GradTrackingTensor(lvl={level}, value=\n" f"{indented_value_repr}\n" f")"
)
if torch._C._functorch.is_functionaltensor(tensor):
return f"FunctionalTensor(lvl={level}, value=\\\n{value_repr})"
raise ValueError("We don't know how to print this, please file us an issue")
def _str(self, *, tensor_contents=None):
with torch.no_grad(), torch.utils._python_dispatch._disable_current_modes():
guard = torch._C._DisableFuncTorch()
return _str_intern(self, tensor_contents=tensor_contents)