ZeroPad1d¶
- class torch.nn.ZeroPad1d(padding)[source]¶
Pads the input tensor boundaries with zero.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters
padding (int, tuple) – the size of the padding. If is int, uses the same padding in both boundaries. If a 2-tuple, uses (, )
- Shape:
Input: or .
Output: or , where
Examples:
>>> m = nn.ZeroPad1d(2) >>> input = torch.randn(1, 2, 4) >>> input tensor([[[-1.0491, -0.7152, -0.0749, 0.8530], [-1.3287, 1.8966, 0.1466, -0.2771]]]) >>> m(input) tensor([[[ 0.0000, 0.0000, -1.0491, -0.7152, -0.0749, 0.8530, 0.0000, 0.0000], [ 0.0000, 0.0000, -1.3287, 1.8966, 0.1466, -0.2771, 0.0000, 0.0000]]]) >>> m = nn.ZeroPad1d(2) >>> input = torch.randn(1, 2, 3) >>> input tensor([[[ 1.6616, 1.4523, -1.1255], [-3.6372, 0.1182, -1.8652]]]) >>> m(input) tensor([[[ 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000, 0.0000], [ 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000, 0.0000]]]) >>> # using different paddings for different sides >>> m = nn.ZeroPad1d((3, 1)) >>> m(input) tensor([[[ 0.0000, 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000], [ 0.0000, 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000]]])