torch.sparse_csc_tensor¶
- torch.sparse_csc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False) Tensor ¶
Constructs a sparse tensor in CSC (Compressed Sparse Column) with specified values at the given
ccol_indices
androw_indices
. Sparse matrix multiplication operations in CSC format are typically faster than that for sparse tensors in COO format. Make you have a look at the note on the data type of the indices.- Parameters:
ccol_indices (array_like) – (B+1)-dimensional array of size
(*batchsize, ncols + 1)
. The last element of each batch is the number of non-zeros. This tensor encodes the index in values and row_indices depending on where the given column starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given column.row_indices (array_like) – Row co-ordinates of each element in values. (B+1)-dimensional tensor with the same length as values.
values (array_list) – Initial values for the tensor. Can be a list, tuple, NumPy
ndarray
, scalar, and other types that represents a (1+K)-dimensonal tensor whereK
is the number of dense dimensions.size (list, tuple,
torch.Size
, optional) – Size of the sparse tensor:(*batchsize, nrows, ncols, *densesize)
. If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements.
- Keyword Arguments:
dtype (
torch.dtype
, optional) – the desired data type of returned tensor. Default: if None, infers data type fromvalues
.device (
torch.device
, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (seetorch.set_default_tensor_type()
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False
.
- Example::
>>> ccol_indices = [0, 2, 4] >>> row_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4] >>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), ... torch.tensor(row_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(ccol_indices=tensor([0, 2, 4]), row_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csc)