ZeroPad2d¶
- class torch.nn.ZeroPad2d(padding)[source]¶
Pads the input tensor boundaries with zero.
For N-dimensional padding, use
torch.nn.functional.pad()
.- Parameters:
padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (, , , )
- Shape:
Input: or .
Output: or , where
Examples:
>>> m = nn.ZeroPad2d(2) >>> input = torch.randn(1, 1, 3, 3) >>> input tensor([[[[-0.1678, -0.4418, 1.9466], [ 0.9604, -0.4219, -0.5241], [-0.9162, -0.5436, -0.6446]]]]) >>> m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) >>> # using different paddings for different sides >>> m = nn.ZeroPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000], [ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000], [ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])