conv1d¶
-
class
torch.nn.quantized.functional.
conv1d
(input, weight, bias, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros', scale=1.0, zero_point=0, dtype=torch.quint8)[source]¶ Applies a 1D convolution over a quantized 1D input composed of several input planes.
See
Conv1d
for details and output shape.- Parameters
input – quantized input tensor of shape
weight – quantized filters of shape
bias – non-quantized bias tensor of shape . The tensor type must be torch.float.
stride – the stride of the convolving kernel. Can be a single number or a tuple (sW,). Default: 1
padding – implicit paddings on both sides of the input. Can be a single number or a tuple (padW,). Default: 0
dilation – the spacing between kernel elements. Can be a single number or a tuple (dW,). Default: 1
groups – split input into groups, should be divisible by the number of groups. Default: 1
padding_mode – the padding mode to use. Only “zeros” is supported for quantized convolution at the moment. Default: “zeros”
scale – quantization scale for the output. Default: 1.0
zero_point – quantization zero_point for the output. Default: 0
dtype – quantization data type to use. Default:
torch.quint8
Examples:
>>> from torch.nn.quantized import functional as qF >>> filters = torch.randn(33, 16, 3, dtype=torch.float) >>> inputs = torch.randn(20, 16, 50, dtype=torch.float) >>> bias = torch.randn(33, dtype=torch.float) >>> >>> scale, zero_point = 1.0, 0 >>> dtype_inputs = torch.quint8 >>> dtype_filters = torch.qint8 >>> >>> q_filters = torch.quantize_per_tensor(filters, scale, zero_point, dtype_filters) >>> q_inputs = torch.quantize_per_tensor(inputs, scale, zero_point, dtype_inputs) >>> qF.conv1d(q_inputs, q_filters, bias, padding=1, scale=scale, zero_point=zero_point)