Shortcuts

Source code for torch.distributed.elastic.metrics.api

#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import abc
import time
import warnings
from collections import namedtuple
from functools import wraps
from typing import Dict, Optional

MetricData = namedtuple("MetricData", ["timestamp", "group_name", "name", "value"])


class MetricsConfig:
    __slots__ = ["params"]

    def __init__(self, params: Optional[Dict[str, str]] = None):
        self.params = params
        if self.params is None:
            self.params = {}


[docs]class MetricHandler(abc.ABC): @abc.abstractmethod def emit(self, metric_data: MetricData): pass
[docs]class ConsoleMetricHandler(MetricHandler): def emit(self, metric_data: MetricData): print( "[{}][{}]: {}={}".format( metric_data.timestamp, metric_data.group_name, metric_data.name, metric_data.value, ) )
[docs]class NullMetricHandler(MetricHandler): def emit(self, metric_data: MetricData): pass
class MetricStream: def __init__(self, group_name: str, handler: MetricHandler): self.group_name = group_name self.handler = handler def add_value(self, metric_name: str, metric_value: int): self.handler.emit( MetricData(time.time(), self.group_name, metric_name, metric_value) ) _metrics_map = {} _default_metrics_handler: MetricHandler = NullMetricHandler() # pyre-fixme[9]: group has type `str`; used as `None`.
[docs]def configure(handler: MetricHandler, group: str = None): if group is None: global _default_metrics_handler # pyre-fixme[9]: _default_metrics_handler has type `NullMetricHandler`; used # as `MetricHandler`. _default_metrics_handler = handler else: _metrics_map[group] = handler
def getStream(group: str): if group in _metrics_map: handler = _metrics_map[group] else: handler = _default_metrics_handler return MetricStream(group, handler) def _get_metric_name(fn): qualname = fn.__qualname__ split = qualname.split(".") if len(split) == 1: module = fn.__module__ if module: return module.split(".")[-1] + "." + split[0] else: return split[0] else: return qualname
[docs]def prof(fn=None, group: str = "torchelastic"): r""" @profile decorator publishes duration.ms, count, success, failure metrics for the function that it decorates. The metric name defaults to the qualified name (``class_name.def_name``) of the function. If the function does not belong to a class, it uses the leaf module name instead. Usage :: @metrics.prof def x(): pass @metrics.prof(group="agent") def y(): pass """ def wrap(f): @wraps(f) def wrapper(*args, **kwargs): key = _get_metric_name(f) try: start = time.time() result = f(*args, **kwargs) put_metric(f"{key}.success", 1, group) except Exception: put_metric(f"{key}.failure", 1, group) raise finally: put_metric(f"{key}.duration.ms", get_elapsed_time_ms(start), group) return result return wrapper if fn: return wrap(fn) else: return wrap
def profile(group=None): """ @profile decorator adds latency and success/failure metrics to any given function. Usage :: @metrics.profile("my_metric_group") def some_function(<arguments>): """ warnings.warn("Deprecated, use @prof instead", DeprecationWarning) def wrap(func): @wraps(func) def wrapper(*args, **kwargs): try: start_time = time.time() result = func(*args, **kwargs) publish_metric(group, "{}.success".format(func.__name__), 1) except Exception: publish_metric(group, "{}.failure".format(func.__name__), 1) raise finally: publish_metric( group, "{}.duration.ms".format(func.__name__), get_elapsed_time_ms(start_time), ) return result return wrapper return wrap
[docs]def put_metric(metric_name: str, metric_value: int, metric_group: str = "torchelastic"): """ Publishes a metric data point. Usage :: put_metric("metric_name", 1) put_metric("metric_name", 1, "metric_group_name") """ getStream(metric_group).add_value(metric_name, metric_value)
def publish_metric(metric_group: str, metric_name: str, metric_value: int): warnings.warn( "Deprecated, use put_metric(metric_group)(metric_name, metric_value) instead" ) metric_stream = getStream(metric_group) metric_stream.add_value(metric_name, metric_value) def get_elapsed_time_ms(start_time_in_seconds: float): """ Returns the elapsed time in millis from the given start time. """ end_time = time.time() return int((end_time - start_time_in_seconds) * 1000)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources