Source code for torch.distributed.elastic.metrics.api
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import abc
import time
import warnings
from collections import namedtuple
from functools import wraps
from typing import Dict, Optional
MetricData = namedtuple("MetricData", ["timestamp", "group_name", "name", "value"])
class MetricsConfig:
__slots__ = ["params"]
def __init__(self, params: Optional[Dict[str, str]] = None):
self.params = params
if self.params is None:
self.params = {}
[docs]class MetricHandler(abc.ABC):
@abc.abstractmethod
def emit(self, metric_data: MetricData):
pass
[docs]class ConsoleMetricHandler(MetricHandler):
def emit(self, metric_data: MetricData):
print(
"[{}][{}]: {}={}".format(
metric_data.timestamp,
metric_data.group_name,
metric_data.name,
metric_data.value,
)
)
class MetricStream:
def __init__(self, group_name: str, handler: MetricHandler):
self.group_name = group_name
self.handler = handler
def add_value(self, metric_name: str, metric_value: int):
self.handler.emit(
MetricData(time.time(), self.group_name, metric_name, metric_value)
)
_metrics_map = {}
_default_metrics_handler: MetricHandler = NullMetricHandler()
# pyre-fixme[9]: group has type `str`; used as `None`.
[docs]def configure(handler: MetricHandler, group: str = None):
if group is None:
global _default_metrics_handler
# pyre-fixme[9]: _default_metrics_handler has type `NullMetricHandler`; used
# as `MetricHandler`.
_default_metrics_handler = handler
else:
_metrics_map[group] = handler
def getStream(group: str):
if group in _metrics_map:
handler = _metrics_map[group]
else:
handler = _default_metrics_handler
return MetricStream(group, handler)
def _get_metric_name(fn):
qualname = fn.__qualname__
split = qualname.split(".")
if len(split) == 1:
module = fn.__module__
if module:
return module.split(".")[-1] + "." + split[0]
else:
return split[0]
else:
return qualname
[docs]def prof(fn=None, group: str = "torchelastic"):
r"""
@profile decorator publishes duration.ms, count, success, failure
metrics for the function that it decorates. The metric name defaults
to the qualified name (``class_name.def_name``) of the function.
If the function does not belong to a class, it uses the leaf module name
instead.
Usage
::
@metrics.prof
def x():
pass
@metrics.prof(group="agent")
def y():
pass
"""
def wrap(f):
@wraps(f)
def wrapper(*args, **kwargs):
key = _get_metric_name(f)
try:
start = time.time()
result = f(*args, **kwargs)
put_metric(f"{key}.success", 1, group)
except Exception:
put_metric(f"{key}.failure", 1, group)
raise
finally:
put_metric(f"{key}.duration.ms", get_elapsed_time_ms(start), group)
return result
return wrapper
if fn:
return wrap(fn)
else:
return wrap
def profile(group=None):
"""
@profile decorator adds latency and success/failure metrics to any given function.
Usage
::
@metrics.profile("my_metric_group")
def some_function(<arguments>):
"""
warnings.warn("Deprecated, use @prof instead", DeprecationWarning)
def wrap(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
start_time = time.time()
result = func(*args, **kwargs)
publish_metric(group, "{}.success".format(func.__name__), 1)
except Exception:
publish_metric(group, "{}.failure".format(func.__name__), 1)
raise
finally:
publish_metric(
group,
"{}.duration.ms".format(func.__name__),
get_elapsed_time_ms(start_time),
)
return result
return wrapper
return wrap
[docs]def put_metric(metric_name: str, metric_value: int, metric_group: str = "torchelastic"):
"""
Publishes a metric data point.
Usage
::
put_metric("metric_name", 1)
put_metric("metric_name", 1, "metric_group_name")
"""
getStream(metric_group).add_value(metric_name, metric_value)
def publish_metric(metric_group: str, metric_name: str, metric_value: int):
warnings.warn(
"Deprecated, use put_metric(metric_group)(metric_name, metric_value) instead"
)
metric_stream = getStream(metric_group)
metric_stream.add_value(metric_name, metric_value)
def get_elapsed_time_ms(start_time_in_seconds: float):
"""
Returns the elapsed time in millis from the given start time.
"""
end_time = time.time()
return int((end_time - start_time_in_seconds) * 1000)