torch.cross¶
-
torch.
cross
(input, other, dim=None, *, out=None) → Tensor¶ Returns the cross product of vectors in dimension
dim
ofinput
andother
.Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension
dim
. In this case, the output has the same batch dimensions as the inputs.If
dim
is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected.See also
torch.linalg.cross()
which requires specifying dim (defaulting to -1).Warning
This function may change in a future PyTorch release to match the default behaviour in
torch.linalg.cross()
. We recommend usingtorch.linalg.cross()
.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.cross(a, b, dim=1) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> torch.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]])