Shortcuts

torch.backends

torch.backends controls the behavior of various backends that PyTorch supports.

These backends include:

  • torch.backends.cuda

  • torch.backends.cudnn

  • torch.backends.mkl

  • torch.backends.mkldnn

  • torch.backends.openmp

torch.backends.cuda

torch.backends.cuda.is_built()[source]

Returns whether PyTorch is built with CUDA support. Note that this doesn’t necessarily mean CUDA is available; just that if this PyTorch binary were run a machine with working CUDA drivers and devices, we would be able to use it.

torch.backends.cuda.matmul.allow_tf32

A bool that controls whether TensorFloat-32 tensor cores may be used in matrix multiplications on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.

torch.backends.cuda.cufft_plan_cache

cufft_plan_cache caches the cuFFT plans

size

A readonly int that shows the number of plans currently in the cuFFT plan cache.

max_size

A int that controls cache capacity of cuFFT plan.

clear()

Clears the cuFFT plan cache.

torch.backends.cudnn

torch.backends.cudnn.version()[source]

Returns the version of cuDNN

torch.backends.cudnn.is_available()[source]

Returns a bool indicating if CUDNN is currently available.

torch.backends.cudnn.enabled

A bool that controls whether cuDNN is enabled.

torch.backends.cudnn.allow_tf32

A bool that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices.

torch.backends.cudnn.deterministic

A bool that, if True, causes cuDNN to only use deterministic convolution algorithms. See also torch.are_deterministic_algorithms_enabled() and torch.use_deterministic_algorithms().

torch.backends.cudnn.benchmark

A bool that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest.

torch.backends.mkl

torch.backends.mkl.is_available()[source]

Returns whether PyTorch is built with MKL support.

torch.backends.mkldnn

torch.backends.mkldnn.is_available()[source]

Returns whether PyTorch is built with MKL-DNN support.

torch.backends.openmp

torch.backends.openmp.is_available()[source]

Returns whether PyTorch is built with OpenMP support.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources